Introduction	Topology of sloths	Triangulations 0000	Open problems
С	In the Topology of V	Valkable Environm	nents

B. Burton¹ A. Hillebrand² M. Löffler² S.Schleimer³ D. Thurston⁴ S. Tillmann⁵ W. van Toll²

Presented by J.L. Vermeulen²

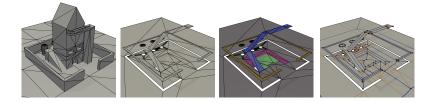
¹University of Queensland, Australia ²Dept. of Inform. and Computing Sciences, Utrecht University, the Netherlands ³University of Warwick - Coventry, Great Britain ⁴Indiana University - Bloomington, United States of America ⁵University of Sydney, Australia

European Workshop on Computational Geometry, 2018

Introduction ●○○○	Topology of sloths	Triangulations 0000	Open problems
Simulating crowds			

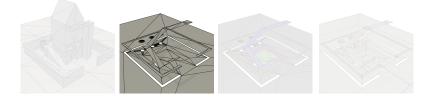
Analysis of crowd disasters

- Hajj (2006, 2009)
- Love Parade (2010)


Improving safety

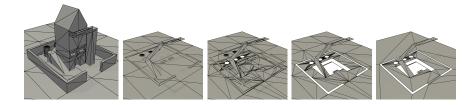
- Simulations of the Hajj
- Evacuations of concerts
- Grand Départ

Entertainment


- Background crowds in games
- Crowds in movies

Introduction	Topology of sloths	Triangulations 0000	Open problems
Preparing for cro	wd simulations		

- 1 Obtain a 3D-model of a building;
- 2 Filter and repair to obtain the walkable environment;
- 3 Obtain a multi-layered environment;
- 4 Generate a navigation mesh.


Introduction	Topology of sloths	Triangulations 0000	Open problems
Preparing for cro	wd simulations		

1 Obtain a 3D-model of a building;

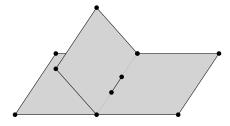
- 2 Filter and repair to obtain the walkable environment;
- 3 Obtain a multi-layered environment;
- 4 Generate a navigation mesh.

Introduction	Topology of sloths	Triangulations 0000	Open problems
Obtaining walkable e	nvironments		

- 1 Obtain a 3D-model of a building;
- 2 Remove regions that are too steep;
- 3 Remove regions with not enough vertical clearance;
- 4 Remove regions that are too small;
- 5 Simplify the walkable environment.

Introduction	Topology of sloths	Triangulations 0000	Open problems
Obtaining walkable e	environments		

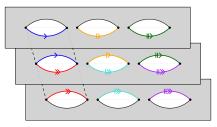
- 1 Obtain a 3D-model of a building;
- 2 Remove regions that are too steep;
- 3 Remove regions with not enough vertical clearance;
- 4 Remove regions that are too small;
- 5 Simplify the walkable environment.


Introduction	Topology of sloths	Triangulations	Open problems
0000			
A small step in the	process		

Goal: Simplify a walkable environment.

- Later, we will subdivide it into layers and treat each layer as a flat object
- Remove internal vertices
- Re-triangulate such that all diagonals are straight line segments (when viewed from above)
- These diagonals will be candidates for cutting the environment into layers

To re-triangulate properly, we need to understand the **geometry and topology** of a walkable environment.



Definition (sloth)

A sloth is a compact surface continuously embedded in \mathbb{R}^3 . Its boundary consists of **m** boundary vertices.

A sloth is **realistic** if the turning angle around any vertex is at most 2π .

Introduction	Topology of sloths	Triangulations	Open problems
0000	○●○	0000	
Genus of sloths $(1/2)$)		

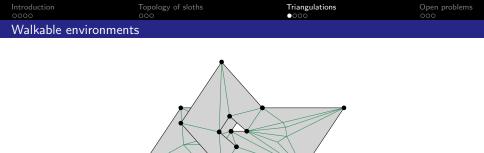
k layers, ℓ slits

Theorem

The genus of a sloth with m vertices is $O(m^2)$.

We use the **Euler characteristic** $\chi(\Sigma) = 2 - 2\text{genus}(\Sigma) - \#\partial\Sigma$. We know $\chi(\Sigma) = \frac{1}{2\pi} \sum_{i} (\pi - \theta_i)$ (Gauss-Bonnet)

Introduction	Topology of sloths	Triangulations	Open problems
0000	000	0000	000
Genus of sloths $(2/2)$			


Theorem

The genus of a realistic sloth with m vertices is O(m).

This follows from the constant maximum turning angle around each vertex.

Corollary

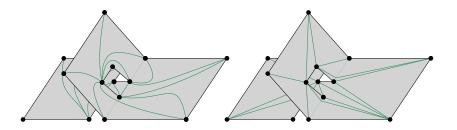
Any triangulation of a realistic sloth with m vertices will have O(m) diagonals (just like for 2D polygons with holes).

Definition (Walkable environment)

A walkable environment is a **geometric representation of a realistic sloth** by triangles in \mathbb{R}^3 supported by **n** vertices, with the following restrictions:

- ► The angle between the ground plane and any triangle is < 90°;</p>
- The minimal vertical distance between any two triangles is non-zero.

Introduction 0000	Topology of sloths	Triangulations ○●○○	Open problems
Goal, revisited			


Goal: Simplify a walkable environment.

- Remove internal vertices
- Re-triangulate such that all diagonals are straight line segments (when viewed from above)

We now know that:

- The input has complexity O(n);
- The output will have complexity O(m);
- ▶ *m* can be much smaller than *n*.

Introduction 0000	Topology of sloths	Triangulations ○○●○	Open problems
Triangulations of slot	ths		

Two types of triangulations of sloths:

Topological: Connect boundary vertices with arcs

Geometric: Connect boundary vertices with arcs that are straight line segments when projected onto \mathbb{R}^2

Triangulation o	f walkable environments		
0000	000	0000	000
Introduction	Topology of sloths	Triangulations	Open problems

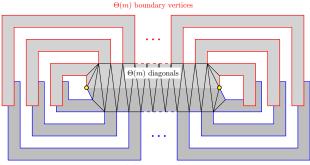
Theorem

A geometric triangulation of a walkable environment can be computed in $O(n + m \log m)$ time.

Algorithm is based on Lee and Preparata.

Instead of sweeping with a line, we sweep with a vertical plane. All events of the algorithm happen at the m boundary vertices.

Introduction	Topology of sloths	Triangulations	Open problems		
0000		0000	●○○		
Number of connections in triangulation $(1/2)$					


Recall: Diagonals of the triangulation will be candidates for cutting the environment into layers. (A cut is then called a *connection* between layers.)

Question: Does every geometric triangulation yield a low number of connections?

Introduction	Topology of sloths	Triangulations	Open problems		
0000		0000	○●○		
Number of connections in triangulation (2/2)					

Question: Does every geometric triangulation yield a low number of connections?

Answer: No, some can yield $\Theta(m)$ while others can yield O(1).

 $\Theta(m)$ boundary vertices

Introduction	Topology of sloths	Triangulations	Open problems
0000		0000	○○●
Follow-up questions			

Question: Can we always compute a 'good' triangulation that yields few connections?

Question: Given a sloth, can we efficiently find the lowest number of connections needed?

Question: Is there a relation between $\#\partial\Sigma$, genus and the treewidth of the dual graph of a geometric triangulation?

Question: Does a realistic sloth exist for which it may be a bad idea to restrict to a geometric triangulation?