
On the Topology of Walkable Environments
Benjamin Burton1, Arne Hillebrand2, Maarten Löffler2, Schleimer,
Saul3, Dylan Thurston4, Stephan Tillmann5, and Wouter van Toll2

1 University of Queensland, Australia
2 Dept. of Inform. and Computing Sciences, Utrecht University, the Netherlands
3 University of Warwick - Coventry, Great Britain
4 Indiana University - Bloomington, United States of America
5 University of Sydney, Australia

Abstract
Motivated by motion planning applications, we study 2-dimensional surfaces embedded in 3-
dimensional space with the property that their vertical projection is an immersion. We provide
bounds on the complexity of a triangulation of such a surface, given that the projection of the
boundary is a polygon with m segments. We then show how these bounds lead to efficient
algorithm to compute such a triangulation. Finally, we relate our result to concrete motion
planning setting and review related open questions.

1 Introduction

Simulations and computer games are often occupied by virtual characters that need to move
autonomously through a virtual environment. This asks for efficient data structures and
algorithms for path planning and crowd simulation. An environment such as a multi-storey
building is three-dimensional, but the characters are restricted to surfaces on which they
can walk. Therefore, while these surfaces are embedded in R3, they are (in some ways)
locally similar to R2. They form an interesting class of environments that we call walkable
environments (WEs).

For the purpose of path planning, it is important to automatically obtain an efficient
representation of a walkable environment [3, 4, 9, 10]. In particular, it is desirable to
subdivide a walkable environment into surfaces that can each be projected onto R2 without
overlap. We refer to such a decomposition as a multi-layered environment (MLE). An
individual surface within an MLE is called a layer, and the ‘cuts’ made for the decomposition
are called connections. The main advantage of an MLE is that each separate layer can be
treated as a 2D component, which allows the extension of 2D data structures [9].

Technically, a connection is a curve along the WE between two boundary vertices of
the WE. For the application’s data structures and algorithms, it is also important that
each connection is a straight line segment when projected onto R2. Furthermore, it is
often desirable to obtain an MLE with a small number of connections because this number
influences the complexity of various algorithms. To understand these demands better, we
first need to study the topological properties of a walkable environment.

Contributions In this paper, we study the topology of walkable environments, and we
present an algorithm that triangulates a WE. Suppose a walkable environment W is given
as a triangulated surface with n vertices and m boundary vertices. (We will give a more
precise definition in Section 2.) We prove that any triangulation of W has O(m) diagonals,
and we present an algorithm that computes a triangulation of W in O(n + m logm) time,
in such a way that each diagonal is a line segment when projected onto R2.

At this point, an alert reader may wonder why we should wish to triangulate a sur-
face that is already triangulated. The difference is that the input triangulation has linear
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



66:2 On the Topology of Walkable Environments

complexity in n, while the output triangulation only has linear complexity in m, which can
be much smaller. For example, an environment containing hilly terrains has many interior
vertices, which will not be present in our output triangulation. The output triangulation
does not have straight edges in R3, but the projections of its edges are straight segments in
R2. This type of triangulation is interesting for path planning applications because these
applications often use projected distances [10], and the diagonals of this triangulation may
be good candidates for connections in an MLE.

Related work There are several applications and algorithms that are already using some
form of a multi-layered environment. Van Toll et al. [9] use an MLE to create a multi-layered
navigation mesh based on the medial axis, which allows for fast path planning queries.
Rodriguez and Amato [8] convert a multi-layered environment to a roadmap representation,
which they then use to find a strategy for efficiently clearing a building. However, both of
these works do not describe how to obtain such an MLE from an arbitrary 3D environment.

A popular way to convert a 3D environment to a walkable environment is to approximate
the environment by 3D grid cells (voxels), in which each voxel is marked as walkable or non-
walkable. Voxelization typically uses the graphics card. Several methods use this concept
as the first step in a pipeline for computing a navigation mesh [1, 6, 7].

Converting a walkable environment to a multi-layered environment, preferably with a
small number of cuts, is a separate problem. Hillebrand et al. [3, 4] model this as a graph
problem. They prove that obtaining an MLE with a minimum number of cuts is NP-hard,
but that good MLEs can often be obtained using heuristics. However, these cuts are not
always suitable as connections since they are restricted to edges of the input triangulation.

Outline To obtain our results, we first introduce some subtly different concepts in Section 2
that capture the special properties of the surfaces we encounter. In Section 3, we analyse
the possible values of the genus of these surfaces. Then, in Section 4, we show how an
adaptation of the polygon decomposition algorithm by Lee and Preparata [5] can be used
to triangulate our surfaces. Finally, in Section 5, we discuss how these results relate to the
problem of finding a good MLE, and we pose the main open question in this area.

2 Definitions

Sloths and walkable environments. We define a sloth to be a compact surface Σ contin-
uously embedded in R3 so that the vertical projection of Σ to R2 is an immersion with a
polygonal boundary consisting of m line segments (or, equivalently, m vertices). That is,
the vertical direction is transverse to Σ. We say that a sloth is realistic if the turning angle
(projected to R2) around any boundary vertex is at most 360 degrees (aka 2π).

We define a walkable environment (WE) as a geometric representation of a realistic sloth
by a set of connected triangles in R3. By definition, a WE has the following properties:

The angle between the normal of each triangle and the normal of the ground plane is
less than 90 degrees.
The minimal vertical distance between any two triangles in the WE is non-zero, with the
exception of shared edges and vertices.

Let n be the total number of vertices in the WE. Note that n can be much larger than
the number of boundary vertices m. Thus, a WE is a particular type of sloth represented by
triangles. Some parts of this paper apply to sloths in general; other parts apply specifically
to realistic sloths or to WEs because they rely on extra properties.



Burton, Hillebrand, Löffler, Schleimer, Thurston, Tillmann and van Toll 66:3

Triangulations of sloths. We define a topological triangulation of a sloth Σ to be a subdi-
vision of Σ into topological triangles whose vertices coincide with the vertices of Σ; that is,
we add arbitrary arcs on the surface that connect pairs of vertices that were not connected
before, and the arcs do not intersect each other except possibly at endpoints.

We define a geometric triangulation of a sloth Σ to be a topological triangulation with
the additional restriction that each edge, when projected to R2, is a straight line segment.

3 Bounds on the genus of sloths

In this section, we provide bounds on the potential genus of sloths, expressed in the com-
plexity of their boundaries. Specifically, for a sloth Σ with m boundary vertices, we are
interested in possible values of genus(Σ) as a linear function of m.

Gauss–Bonnet Recall that the Euler characteristic of a compact, orientable surface Σ is:

χ(Σ) = 2− 2genus(Σ)−#∂Σ,

where #∂Σ is the number of connected components in the boundary of Σ. The following
result relates the topology of the surface to its geometry. We use the special case when the
curvature vanishes on the interior and the curvature of the boundary is zero except at the
polygonal corners.

I Theorem 3.1 (Gauss–Bonnet, flat version). Let Σ be a surface with a locally Euclidean
metric and polygonal boundary, with corners at ci with interior angle θi. Then

χ(Σ) = 1
2π

∑

i

(π − θi).

Here, π − θi should be thought of as the bending angle at ci: zero if there is no actual
corner, positive if the corner is convex as on the boundary of a convex polygon in the plane,
and negative if the corner is concave.

Application to sloths We use Theorem 3.1 to prove an upper bound of the genus of a sloth.

I Theorem 3.2. Let Σ be a surface with boundary and let f : Σ → R2 be an immer-
sion on the interior of Σ so that f(∂Σ) is a polygonal path with m line segments. Then
genus(Σ) ≤ m(m + 1)/4. Furthermore, there are examples coming from embeddings in R3

with genus(Σ) = (m/8− 1)2.

Proof. The examples achieving quadratic genus growth are “parking garages” Pk,l, as shown
in Figure 1:

take k parallel rectangular sheets;
cut out l slits from each sheet (stacked on top of each other); and
rejoin across the slits, shifting down one level as you go.

We can apply Theorem 3.1 (the Gauss–Bonnet theorem) to the metric on Σ coming from
the map to R2. Here, π − θi should be thought of as the bending angle at ci: zero if there
is no actual corner, positive if the corner is convex as on the boundary of a convex polygon
in the plane, and negative if the corner is concave. Some of the corners in Pk,l are very
concave, with a total internal angle of approximately 2kπ. The result of this computation
is that genus(Pk,l) = (k − 1)(l − 1). Furthermore, Pk,l can be realized with a polygonal
boundary with 4k + 4l corners.

EuroCG’18



66:4 On the Topology of Walkable Environments

Figure 1 A parking garage, shown for k = 3 and l = 3. Edges with corresponding marking are
glued; this can be achieved by stacking the sheets in 3 dimensions and attaching connecting ramps.

For the upper bounds on genus, we again apply Theorem 3.1 and give an upper bound
on the interior angles θi. To do this, we first bound the total multiplicity in any region, the
degree by which it is covered by Σ. The multiplicity at a point x ∈ R2 can be computed by
sending a ray out to infinity in either direction from x, and so is at most m/2. The angle θi

at a corner ci is bounded by 2π times the multiplicity in any adjoining region. This yields
the stated upper bound on genus. J

The last observation leads to the following theorem:

I Theorem 3.3. For a realistic sloth Σ with m boundary vertices, genus(Σ) is O(m).

4 Geometric triangulations of sloths

We are interested in geometric triangulations of walkable environments because these can
be useful representations for the purpose of path planning and crowd simulation. In this
section, we first discuss triangulations of sloths in general, and then we present an algorithm
for triangulating a WE.

I Observation 4.1. If a sloth has m vertices, b boundary components, and genus g, then
every (topological or geometric) triangulation has t = 4g + b+m− 4 triangles.

I Lemma 4.2. Every sloth has at least one geometric triangulation.

Proof. We show that whenever Σ is not yet triangulated, we can always find a diagonal
that splits Σ into two valid sloths, which we can then recursively triangulate again.

Consider a convex vertex v. A surface ray is a curve in R3 that lies completely inside
Σ, but whose vertical projection to R2 is a straight line segment. We shoot a surface ray r
from v over the sloth in an arbitrary direction; note that, once we fix the direction, the ray
is unique except potentially when it passes through a vertex of Σ. If r does pass through a
vertex of Σ, we are happy. If r does not pass through a vertex of Σ, we can continuously
rotate r about v until it does; note we can rotate r in two directions until it coincides with
either of the incident boundary edges of Σ at v. We distinguish two cases.

1. The ray r passes through a vertex x of Σ, and x is not a neighbour of v on the boundary
of Σ. By construction, there is a unobstructed path on Σ from v to x which projects to
a line segment. We add edge vx to our triangulation, and recursively triangulate the one
or two smaller sloths.

2. When sweeping in both directions, the ray r hit no vertices other than u and w, the
neighbours of v on the boundary of Σ. Consider the edge uw, which projects to a
straight segment. If uw crosses any existing boundary edge e of Σ, there must be either



Burton, Hillebrand, Löffler, Schleimer, Thurston, Tillmann and van Toll 66:5

be a vertex x contained in the triangle uvw (on Σ), or the edge e crosses (passes over
or under) uv or uw. In the first case, we should have found x when sweeping r. In the
second case, there must be another edge e′ on Σ that e crosses, in order to move over
or under uv or uw. We now argue similarly about the endpoinds of e′: either, there is
an endpoint inside uvw, or e′ also crosses uv or uw. Eventually, we run out of edges.
Contradiction. We add edge uw to our triangulation, and recursively triangulate the
smaller sloth. J

Combined with Theorem 3.3, we can conclude the following:

Every sloth with m vertices has a geometric triangulation with O(m2) triangles.
Every sloth with m vertices, whose vertices all have a constant maximum turning angle,
has a geometric triangulation with O(m) triangles. By definition, this also holds for
every realistic sloth, and for every walkable environment with m boundary vertices.
All triangulations of a given sloth have the same number of triangles and diagonals.

We now describe an algorithm that computes a geometric triangulation of a WE with n
vertices and m boundary vertices in O(n + m logm) time. It applies only to WEs because
it relies on the maximum turning angle of realistic sloths around the boundary vertices.

I Lemma 4.3. A geometric triangulation of a walkable environment W with n vertices and
m boundary vertices can be computed in O(n+m logm) time.

Proof sketch. The idea is to split W into y-monotone pieces via a 2D plane sweep over all
boundary points sorted by y-coordinate, similar to the algorithm by Lee and Preparata [5]
for splitting a 2D polygon (with or without holes) into y-monotone pieces. However, several
complications arise due to the nature of WEs.

First, we need to obtain a boundary representation of W such that we can move from
any boundary vertex to any adjacent boundary vertex in constant time. This can be done
in O(n) time if W is given as a DCEL.

Using this boundary representation as input, we sweep a plane H parallel to the x- and
z-axes, starting at y = −∞, and we maintain a set of curves on H where it intersectsW. We
may encounter four types of events, reminiscent of the Reeb graph: start events (where a
new curve appears), split events (where a curve splits into two curves), merge events (where
two curves merge into a single curve), and end events (where a curve disappears).

Since the projection in the z-direction of the boundary ofW is polygonal, and the sweep
plane is parallel to the z-axis, all events occur at vertices of W. Furthermore, because W
is a realistic sloth, all events are indeed related to at most two curves. (This would not be
the case in the non-realistic parking garage from Figure 1, where a single vertex can induce
many curves). Hence, we can detect and sort all events in O(m logm) time.

Now, we process the events maintaining the latest merge vertex, as in the classic algo-
rithm in [5]. We provide a complete description of the algorithm in the full version of this
paper.

After applying the algorithm, we have subdivided W into a set of y-monotone pieces.
Observe that each y-monotone piece Pi is a simple polygon when projected to R2. Therefore,
each Pi (with mi boundary vertices) can be triangulated in O(mi) time, and the combined
time for triangulating all parts is O(m). The result is a triangulation of the WE.

Combined with the pre-processing time for obtaining a boundary representation, this
proves the lemma. J

EuroCG’18



66:6 On the Topology of Walkable Environments

5 Layers and Connections

The results from the previous sections form a first step towards the practical decomposition of
a walkable environment into layers for path planning purposes. Recall that we are interested
in obtaining a multi-layered environment (MLE) with a minimum number of connections,
where each connection is a straight line segment when projected onto R2.

Expressed in terms of sloths, we define a sloth to be flat if its projection to R2 is a
polygon without self-intersections; that is, no two points on the sloth project to the same
point in R2. The generalized version of our problem is to decompose a sloth Σ into flat
sloths, by cutting Σ in such a way that the endpoints of each cut are boundary vertices of
Σ, and each cut projects to a line segment in R2.

The triangulation algorithm from Section 4 first decomposes Σ into y-monotone pieces
(and then into triangles). This subdivision into y-monotone pieces already induces a valid
MLE. However, better subdivisions (with fewer connections) might exist.

Let C∗(Σ) be the minimum number of connections required for subdividing a sloth Σ
into layers. We conclude by stating the following open question:
I Question 1. Given a sloth Σ represented as a WE with n internal vertices and m boundary
vertices, (how) can we subdivide it into a multi-layered environment with C∗(Σ) connections,
or with a number of connections that approximates C∗(Σ)?

Acknowledgements. This research was initiated at Dagstuhl Seminar 17072. We would like to
thank all participants of the seminar for their fruitful discussions. M.L was partially supported by
the Netherlands Organisation for Scientific Research (NWO) through project no. 614.001.504.

References
1 L. Deusdado, A.R. Fernandes, and O. Belo, Path planning for complex 3D multilevel envi-

ronments. Proc. 24th Spring Conf. on Computer Graphics, pp. 187–194 (2008).
2 J. Guo, F. Hüffner, E. Kenar, R. Niedermeijer, and J. Uhlmann, Complexity and exact

algorithms for multicut, Proc. Current Trends in Theory and Practice of Computer Science,
SOFSEM 3831, pp. 137–147 (2006).

3 A. Hillebrand, M. van den Akker, R. Geraerts, and H. Hoogeveen, Performing multicut on
walkable environments, Proc. 10th Int. Conf. on Combinatorial Optimization and Applica-
tions, pp. 311–325 (2016).

4 A. Hillebrand, M. van den Akker, R. Geraerts, and H. Hoogeveen, Separating a walkable
environment into layers, Proc. 9th Int. Conf. on Motion in Games, pp. 101–106 (2016).

5 D.T. Lee and F.P. Preparata, Location of a point in a planar subdivision and its applica-
tions, SIAM Journal of Computing, 6:594–606 (1977).

6 R. Oliva and N. Pelechano, NEOGEN: Near optimal generator of navigation meshes for
3D multi-layered environments. Computers & Graphics 37(5), pp. 403–412 (2013).

7 J. Pettré, J.P. Laumond, and D. Thalmann, A navigation graph for real-time crowd ani-
mation on multilayered and uneven terrain, Proc. First Int. W. Cr. Sim., pp. 81–89 (2005).

8 S. Rodriguez and N.M. Amato, Roadmap-based level clearing of buildings, Lecture Notes in
Computer Science, vol. 7060 LNCS, pp. 340–352 (2011).

9 W. van Toll, A. F. Cook IV, and R. Geraerts, Navigation meshes for realistic multi-layered
environments, Proc. Int. Conf. on Intelligent Robots and Systems, pp. 3526–3532 (2011).

10 W. van Toll, R. Triesscheijn, M. Kallmann, R. Oliva, N. Pelechano, J. Pettré, and R. Ger-
aerts, A Comparative Study of Navigation Meshes, Proc. 9th Int. Conf. on Motion in Games,
pp. 91–100 (2016).


